IAG/GGOS Inter-comparison Campaign on SNR-based GNSS Reflectometry for Sea Level Monitoring

F. Nievinski¹, T. Hobiger², K. Boniface³, R. Haas², W. Liu⁴, N. Roussel⁵, J. Strandberg², S. Tabibi⁶, S. Vey⁴, J. Wickert⁴, S. Williams⁷.

(1) Federal University of Rio Grande do Sul, Brazil; (2) Chalmers University of Technology, Sweden; (3) Géosciences Environnement Toulouse - University of Toulouse, France; (4) GFZ Potsdam, Germany; (5) Université de Toulouse, France; (6) University of Luxembourg, Luxembourg; (7) National Oceanography Centre, UK.

GNSS+R 2017 Workshop
May 23-25, 2017, Ann Arbor, MI USA
Outline

• Part I: IAG/GGOS Working Group

• Part II: SNR-based GNSS-R

• Part III: Inter-comparison campaign

• Part IV: Future work
International Association of Geodesy (IAG) Global Geodetic Observing System (GGOS)

Services: IGS, PSMSL, etc.

Targets:
• Water storage
• Sea level
• Ground deformation
• Atmospheric sounding
IAG/GGOS Working Group 4.3.9

• Created at the end of 2015
• Focus on *geodetic* GNSS-R:
 – Geodetic instrumentation for GNSS-R data collection
 • E.g., existing ground networks, including historical data
 – GNSS-R environ. estimates to aid in geodetic positioning
 • E.g., hydrologic loading (subsidence/uplift)
• Members from 11 countries:
 – BRA CHN FRA DEU JPN LUX ESP SWE CHE GBR USA
• Liaisons with:
 – Permanent Service for Mean Sea Level
 – IEEE Geosciences and Remote Sensing Society
GNSS Multipath Reflectometry

• 1 clean replica for 1+1 paths
• Coherent reflections
 - Low-noise interferometric phase:
 \[\sigma_{\phi_i}^2 = \sigma_{\phi_d}^2 + \sigma_{\phi_r}^2 - 2\sigma_{\phi_d}\sigma_{\phi_r}\rho_{\phi_d\phi_r} \]
 - Wave superposition:
 \[P \propto P_d + P_r + 2\sqrt{P_d}\sqrt{P_r}\cos\phi_i \]
• Main observables: SNR
 - Then a.k.a. Interference-Pattern Technique or Interferometric Reflectometry (not iGNSS-R or zero replica)
 - Also feasible: carrier-phase & pseudorange ("MP")
Interferometric phase model

\[\phi_i = \phi_r - \phi_d = \phi_I + \phi_X + \cdots \]
(no clocks, iono, etc.)

Surface geometry:

\[\phi_I = k\tau_i = k_z H \]
\[\tau_i = 2H \sin e \]
\[k_z = k \sin e \]
\[k = 2\pi/\lambda \]

Material composition & Antenna radiation pattern:

\[\phi_X = \text{arg}(X^R + X^L) \]
\[X^R = R^S\sqrt{G_r^R} \exp(1\Phi_r^R) \]
\[X^L = R^X\sqrt{G_r^L} \exp(1\Phi_r^L) \]

Reflector height retrieval:

Unwrapped & ambiguity fixed: Scaled interferometric Doppler:

\[H' \approx \frac{\phi_i'}{k_z} \]
\[H = \frac{\partial \phi_i}{\partial k_z} = \frac{\dot{\phi}_i}{k_z} = \frac{\Delta \omega_i}{k \dot{e} \cos e} \]
Environmental targets

- Multiple targets feasible:
 - Sea level
 - Snow depth
 - Soil moisture

- Chosen target: **sea level**
 - More levelled surface
 - Contrary to snow depth
 - Little dependence on antenna gain/phase pattern
 - Contrary to soil moisture
 - Large phase change
 - Esp. for high antennas
 - Homogenous composition and negligible vertical stratification

- Several independent demonstrations worldwide
Coastal sea level altimetry

- Sea level rising globally with regional variability
- GPS: vertical land motion control near tide gauges
Inter-comparison campaign

- Start: end of 2016
- Goal: to validate state-of-art retrieval algorithms
- Participation: 5 teams (SWE LUX DEU FRA GBR)
- Initial site: Onsala, Sweden (courtesy Chalmers U.)
 - Colocated tide gauge
Input observations

• **Antenna:** Leica AT504 GG
• **Receiver:** Leica GRX1200 GG
• **GNSS period & rate:** 1 yr, 1 Hz
 – **8 GB** in daily RINEX v.2 files
• **GNSS constellations:** GPS & GLONASS
• **SNR signals:**
 – GPS: L1-C/A, L2-P(Y) – no L2-C(SLX)
 – GLONASS L1-C, L2-P
 – Missing (RINEX-v3 only): GPS L1-P(Y), GLO L1-P, L2-C.
• **Tide gauge sampling interval:** 1 min.
Retrieval settings

1) Elevation angle mask (oscillations): 1° - 14.5°
2) Azimuthal mask (land/sea): 70° - 260° clockwise
3) GNSS signals utilized: all 4 and GPS-L1-C/A only.
4) Retrieval sampling interval: 1 min, 20 min, etc.
5) Retrieval smoothing period: none, 6 h, etc.
6) Basic observation group: none, 8° chunks, etc.
7) Multi-signal combination: SNR or reflector height
8) Vertical velocity correction: yes, no (negligible).
9) Tropospheric correction: no.

Next: a couple of representative solutions.
Tide gauge vs. GPS L1-C/A: Sea level time series

Group (a)

Group (b)
Tide gauge vs. GPS L1-C/A: Sea level time series
Tide gauge vs. GPS L1-C/A: Scatterplots

Group (a)

Group (b)
Tide gauge vs. GPS L1-C/A: Error (GPS-minus-TG) time series

Group (a)

Group (b)
Tide gauge vs. GPS L1-C/A: van de Casteele test

Group (a)

Group (b)

(diferente scales)
Summary statistics

Single signal (GPS L1-C/A):

<table>
<thead>
<tr>
<th></th>
<th>Group</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Correlation coeff.</td>
<td>0.99</td>
<td>0.99</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>RMSE (m)</td>
<td>0.02</td>
<td>0.03</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Regression slope</td>
<td>1.01</td>
<td>1.00</td>
<td>1.08</td>
<td></td>
</tr>
</tbody>
</table>

Multi-signal (dual-freq. GPS/GLO)

<table>
<thead>
<tr>
<th></th>
<th>Group</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>Correlation coeff.</td>
<td>1.00</td>
<td>0.99</td>
<td>0.44</td>
<td>0.23</td>
</tr>
<tr>
<td>RMSE (m)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.19</td>
<td>0.28</td>
</tr>
<tr>
<td>Regression slope</td>
<td>1.04</td>
<td>0.98</td>
<td>0.42</td>
<td>0.29</td>
</tr>
</tbody>
</table>

* not available; ** to be checked

Conclusions:
- Very high correlation
- Centimeter-level error
- Few-percent slope bias
Ongoing and future work

- Tidal constituents
- Time-frequency analysis
 - Wavelets, coherence
- Systematic effects
 - Regression slope deviating from 1:1
- Submit for publication
- Neglected effects
 - Tropospheric delay
 - EM bias

- Second and third sites:
 - Larger tidal range
 - Greater elevation
 - Separation of antenna above sea surface
- Synthetic SNR observations
 - Using end-to-end simulator
- Adopt RINEX v.3?
 - Non-ambiguous signals:
 - S1: S1C, S1P, S1W, S1Y
 - S2: S2C, S2S, S2L, S2X, S2P, S2W, S2Y
Further tasks of WG 4.3.9

- Additional open data
 - For research reproducibility
 - Three-parts:
 - Input measurements
 - Output retrievals
 - In situ data
- Extend IGS Site Guidelines
 - Make GNSS sites more useful for GNSS-R
- New liaisons:
 - IGS-TIGA: Tide Gauge Benchmark Monitoring Project
 - IOC-GLOSS: Global Sea Level Observing System
- Vision: a combined international GNSS-R data product for coastal sea level altimetry
 - Inspiration: IGS weighted average satellite ephemeris
IAG/GGOS Inter-comparison Campaign on SNR-based GNSS Reflectometry for Sea Level Monitoring

F. Nievinski1, T. Hobiger2, K. Boniface3, R. Haas2, W. Liu4, N. Roussel5, J. Strandberg2, S. Tabibi6, S. Vey4, J. Wickert4, S. Williams7.

(1) Federal University of Rio Grande do Sul, Brazil; (2) Chalmers University of Technology, Sweden; (3) Géosciences Environnement Toulouse - University of Toulouse, France; (4) GFZ Potsdam, Germany; (5) Université de Toulouse, France; (6) University of Luxembourg, Luxembourg; (7) National Oceanography Centre, UK.

felipe.nievinski@ufrgs.br

GNSS+R 2017 Workshop
May 23-25, 2017, Ann Arbor, MI USA