Preliminary CYGNSS Intercalibration

Darren McKague, Chris Ruf,
Rajeswari Balasubramaniam, Maria-Paola Clarizia
University of Michigan
Intercalibration Overview

• CYGNSS will produce wind speed and mean squared slope (MSS) estimates from multiple satellites
 – Want estimates to be consistent from receiver to receiver
• Intercalibration is the process of ensuring that receiver to receiver biases are identified and addressed
 – Preference is to addressed at L1/observable level
 – Best case scenario: from analysis of biases, root cause is determined and fixed at lowest possible level
 – Fall-back: if root cause cannot be found and corrected on a “do no harm” basis, develop empirical corrections to provide consistent retrievals
• This presentation will show preliminary results of CYGNSS intercalibration efforts …
Multiple receivers and transmitters to characterize

- Receivers: 8 CYGNSS satellites each with two antennas (port, starboard)
 - Within control of CYGNSS mission with relatively well understood status (e.g., antenna patterns, attitude, receiver gains)
- Transmitters: 31 GPS satellites
 - Out of CYGNSS mission control with limited available characterization (e.g., antenna patterns, attitude, transmit power)

- Several possible combinations with several unknowns

Must break problem down into components

- Start with GPS Transmitter/CYGNSS Receiver split …
• First look CYGNSS satellite to satellite variability in terms of main observable: NBRCS
• Keeping SVN fixed, look for simultaneous observations between pairs of CYGNSS Satellites
 – Criteria for simultaneity:
 • Same PRN
 • Within 30 minutes
 • Within .25 degrees of latitude and longitude
 – Data set: first 60 days of NBRCS
 • All available PRN, incidence angles, RCG > 10
 • Don’t pick up all possible pairs – need more data
Example NBRC Matchup
FM 01 with FM 05, FM 08

R² .95
Bias 1.2

R² .93
Bias 4.4
• Now look at GPS constellation with respect to NBRCs
 – Keeping CYGNSS FM fixed, look at NBRCs as a function of GPS SVN/PRN
 • Break down into ranges of conditions where NBRCs should be same from PRN to PRN: narrow range of sea states (wind speed), viewing geometry (incidence angle)
Normalization of GPS Tx Power

- To compute NBRCS, need to know Tx power by SVN
 - Not reported in the public domain (averaged power ~25 W)
 - Compute a relative power:

- For given CYGNSS satellite, look at NBRCS in narrow range of wind speeds, incidence angles
 - Based on first 40 days of data, assuming constant Tx power over period
 - Compute mean NBRCS for each PRN and normalize from mean across all PRNs in multiple wind speed, incidence angle ranges
 - Compute overall PRN specific relative power and uncertainty from the mean and stand deviation over these multiple bins

- Wind speed bins: 5-7, 7-9, 9-11 m/s
- Incidence angle bins: 20-25, 25-30, 30-35 degrees
Relative Power vs. PRN
Assuming Average of 25 W
GPS Antenna Patterns

- There are published antenna patterns for two of the third GPS block, but expect variability within block and need patterns for third block
 - Address variability in same manner as Tx power: compute relative gains from CYGNSS NBRCS as function of off-boresight angle (azimuth not considered)
- Start with published GPS antenna patterns and:
 - Compute mean NBRCS for each PRN over range of off-boresight angles and wind speed bins (1 degree angle bins, same wind speed bins as above)
 - Smooth results in off-boresight angle
 - Normalize these by mean across all PRNs for each bin
 - Compute PRN specific gain scale factor as function of off-boresight angle from mean across wind speed bins
 - Scale these by Tx power scale factor from above to normalize by total power
 - This gives relative power as function of off-boresight angle with respect to power at incidence angle of 20-35 degrees = off-boresight angle of 4-6 degrees
Block IIR Relative NBPCS
No Antenna Pattern Scaling
Block IIR-M Relative NBRCs
No Antenna Pattern Scaling

Relative Power

GPS Off-boresight Angle (deg)
Block IIF Relative NBRCs
No Antenna Pattern Scaling
Block IIR-M Relative NBRCs
With Antenna Pattern Scaling
Block IIF Relative NBRCs
With Antenna Pattern Scaling
Impact of Scaling

- After scaling Tx power and antenna patterns, should have consistency from PRN to PRN in NBRCs as a function of wind speed and incidence angle
 - Example: two widest spread PRNs – 7 and 14 …
NBRCs vs. Wind Speed, No scaling
Incidence Angle 25-30 degrees

- PRN 7
- PRN 14
NBRCs vs. Wind Speed with Scaling Incidence Angles 25-30 degrees
Preliminary CYGNSS Intercal Summary

- Initial CYGNSS intercalibration has:
 - Addressed to first order GPS satellite to satellite variability
 - Made assumption that Tx power did not vary during analysis and ignored azimuthal variability, yaw maneuvers
 - Adjustments were indirect (through CYGNSS reflectometer measurements) and not absolute (only relative assuming 25 W average power)
 - Assessed CYGNSS satellite to satellite variability
 - Uncertainties are large, and some biases present, but variability between CYGNSS satellites relatively minor compared to uncertainties and no outliers satellites seen

- Next steps:
 - GPS side:
 - Absolute measurements of GPS Tx power and more direct antenna pattern measurements: UM GPS power monitoring ground station (see poster from Tianlin Wang)
 - GPS yaw state “monitoring” from JPL GIPSY-OASIS software
 - CYGNSS side: find more satellite pair matchups and analyze
 - Track down and resolve sources of outliers
 - Quantify and characterize biases between all satellites in pairwise fashion
CYGNSS Intercalibration

• With GPS intercalibration addressed in a relative sense, now use updated NBRCS to assess CYGNSS satellite to satellite biases
 – As with above, keep PRN fixed and assess NBRCS as a function of wind speed and incidence angle
Mean NBRCs, Incidence Angle 28-30 degrees
Mean NBRCS, Incidence Angle 4-6 degrees
Mean NBRCS, Incidence Angle 60-52 degrees