Results from the GLORIE GNSS-R Airborne campaign for land applications

Erwan Motte1, Mehrez Zribi1, Pascal Fanise1, Dominique Guyon2, Sylvia Dayau2, Jean Pierre Wigneron2

1CESBIO Toulouse France
2INRA Bordeaux, France
Background

• Study of the Interactions of the GNSS-R signal with land surface (roughness, soil moisture) and vegetation (Forests, crops)

• Previous dedicated missions:
 – SMEX02 (Masters, Katzberg 2002)
 – LEiMON & GRASS (Egido 2010-2011)

• Current knowledge
 – Sensitivity of GNSS-R to soil moisture
 – Usefulness of RHCP polarization
 – Sensitivity to forest biomass
Rationale of the GLORIE campaign

• Gather an extended dataset for GNSS-R land application studies
• Verify the current knowledge
• Further explore
 – Effect of measurement geometry
 – Effects of crop types
 – Effect of Forests
 – Other modulations (Galileo?)
• Provide data for bistatic scattering models
• Develop inversion methods
Aircraft measurements dataset

- **Instrument characteristics**
 - Dual pol (LHCP & RHCP) hemispherical antennas
 - 4 synchronized RF channels L1 centered, 8MHz BW
 - Direct down conversion, 10MSPS, IQ
 - Relative channel calibration

- **Flight characteristics**
 - 600 m AGL, 100 m/s

- **Dataset**
 - 5 flights over 4 areas of interest + lakes
 - 2 weeks span (June – July 2015)
 - 15 hours of raw data recording
GNSS data processing

- Raw data to geolocalized reflectivity
 - Clean replica waveform generation (L0)
 - Waveform maximum extraction & time tagging (L0b)
 - Instrumental calibration (antenna, direct signal, noise) and computation of reflectivity (L1a) incoh avg = 240ms
 - Geolocation and conversion to shapefiles (L1b)

- Improvements
 - Tracking of the specular point in non optimal configurations
 - Correction for Antenna Gain
 - Correction of the direct signal in the case of strong multipath
 - Correction for RHCP xPol

\[
ICF_{corr} = \frac{|Y_{r,\text{max}}| - B_r}{|Y_{d,\text{max}}| - B_d} e^{j(\phi_{r,\text{max}} - \phi_{d,\text{max}})} \frac{G_d}{G_r}
\]

\[
\Gamma'_{pq} = \left\langle |ICF_{corr}|^2 \right\rangle - \sigma_{ICF_{corr}}^2
\]
In situ ground truth dataset – Agricultural

• Parameters:
 - Soil moisture
 - Roughness
 - vegetation cover height
 - Leaf Area Index (LAI)
 - vegetation water content
 - NDVI from optical EO

• Extent
 - 3 areas
 - 30 fields
 - Several crop types
In situ ground truth dataset - Forests

- **Parameters:**
 - Age
 - Diameter (DBH)
 - Height
 - Density
 - Estimation of Above Ground Biomass (AGB) from allometric equations
 - Qualitative description of ground cover

- **Extent**
 - 3 areas
 - 100+ stands
 - Biomass up to 150 t/Ha
Distribution of Measurements

Forests

Agricultural
Results: Agricultural Areas LHCP (1)

All elevations (30-90) -> Sensitivity to vegetation height and soil moisture
Results: Agricultural Areas LHCP (2)

Multi linear fit: Soil Moisture and vegetation Height : $r^2=0.7$
Results: Agricultural Areas LHCP (2)

Low elevation (30-60)

- Veg +, SM -

High elevation (60-90)

- Veg -, SM +
Results: Agricultural Areas Pol Ratio

Only improvement: correlation with vegetation height at high elevation angle (60-90), no improvement for soil moisture.
Preliminary Results: Forest

Saturation after 50 t/Ha or 10m. Effect of cover?
Further investigations

• Instrument: NT1065 chip
 – 4 channels with 1 or 2 LOs
 – Simultaneous L1/L2/L5
 – Up to 36MHz Bandwidth
 – Low cost, high integration

• Processing
 – Moving towards open source GNSS-SDR (multi constellation, multi frequency, GPU ready-> Real time?)

• Modelling
 – Modelling of soil moisture / Vegetation/ forest effects on GNSS-R signals

• Inversion
 – Develop robust inversion algorithm for soil moisture and vegetation (based on incidence angle dependance, Polarization)
Summary and Conclusions

• A campaign dedicated to the analysis of polarimetric airborne GNSS-R sensitivity to land parameters was successfully performed, with more than 15 hours of raw data recorded.

• A large amount of ground truth was collected, mostly related to soil moisture, crop and forest biomass parameters.

• New processing techniques were studied to be able to work with the full dataset (low elevation angle), perturbed direct signal, cross polarization issues.

• Analysis of the Data over agricultural areas show a good correlation with vegetation height, related to biomass for these crops, and a moderate correlation with soil moisture.

• Preliminary analysis with forest data shows limited correlation with biomass, saturation at low biomass, probably linked to the presence of a thick vegetation cover on the ground.

• Electromagnetic modeling of the scattering and attenuation mechanisms is needed to better understand the observations and move towards an efficient inversion algorithm.
Thank you

erwan.motte@cesbio.cnnes.fr