TDS-1 Coherent Returns over Sea Ice and Land Surfaces

Jeonghwan Park, Joel T. Johnson, and Andrew O'Brien

ElectroScience Laboratory, Department of Electrical and Computer Engineering,
The Ohio State University, Columbus, OH 43212
Email: park.1558@osu.edu

25 May 2017

Acknowledgment: TDS-1 Team for Making TDS-1 Data Available

THE OHIO STATE UNIVERSITY
Objective

• Land surface DDMs from TDS-1 and CYGNSS available for analysis by community
• The scattered power at the receiver is composed of a reflected coherent component and a scattered incoherent component [1]
 • Coherent returns mainly from flat young/thin sea ice, small inland waterbodies, and very flat land surfaces (< 10cm rms height)
 • Coherent return offer potential opportunity for enhanced spatial resolution measurements
• Goals for this talk:
 • Report initial work in examining TDS-1 coherent components over ice/land surfaces
 • Examine different detection methods for coherent returns
• Previous methods used for detecting coherent returns:
 • SNR : Reflected power above noise [1,2,5-7]
 • 1-D Correlation between integrated Doppler cut with ambiguity function [3]
 • Using a DDM spreading metric [4]

Overview

• Coherent Reflection: Basic Properties
• Methods for Identifying Coherent Returns
• Applications
 • Sea Ice
 • Land Surfaces
• Conclusion and Further Work
Basic Properties of Coherent Returns

• Physics of coherent reflection from a rough surface:\[8\]:

\[
P_{pq}^c = \frac{P_t G^t G''}{4\pi (R_1 + R_2)^2} \cdot \frac{G'' \lambda^2}{4\pi} \frac{1}{\Gamma_{lr}}
\]

\(\lambda\) : Wavelength
\(P_t\) : Transmit Power
\(G^t, G''\) : TX and RX antenna gain
\(R_1, R_2\) : Ranges from TX and SP, SP and RX

• Removing the constants:

\[
P_{pq}^c \propto \left| R_{lr} \right|^2 e^{-4k^2h^2 \cos^2 \theta} \cdot \frac{G''}{(R_1 + R_2)^2}
\]

\(\Gamma_{lr}\) : Fresnel reflection coefficient

\(R_{lr}\) : Function of soil moisture, soil texture, roughness, and inc. angle

• Resolution: First Fresnel zone ~ a few km or less (flat surface required!)
 • but degraded by motion of satellite during measurement integration time

Example TDS-1 Coherent Return

- Coherent returns should appear as “uncorrupted” ambiguity function in the DDM
- TDS-1 coherent return example from sea ice (RD=33, TD=736, Index=136)

TDS-1 DDM Measurements

2-D Power Ambiguity Function

\[\chi^2(\delta \tau, \delta f) \approx \Lambda^2(\delta \tau) \cdot |S(\delta f)|^2 \]

\[|S(\delta f)|^2 = \frac{\sin(\pi \delta f T_c)}{\pi \delta f T_c} = \sin^2(\delta f T_c) \]

\[\Lambda^2(\delta \tau) = \begin{cases}
1 - \frac{|\delta \tau|}{\tau_c}^2, & |\delta \tau| \leq \tau_c \\
0, & |\delta \tau| > \tau_c
\end{cases} \]

Comparison (Doppler cut at SP)

Correlation : 0.9982
Test Statistics for Identifying Coherent Returns

- Conventional SNR method
 \[SNR = \frac{DDM_{peak} - N_{thermal}}{N_{thermal}} \]
 - \(N_{thermal} \): noise power estimates from averaged early time DDM pixels
 - Declare detection if SNR > threshold

- 1-D correlation between integrated Doppler cut with ambiguity function
 - Calculate the correlation coefficient of normalized \(x \) and \(y \)
 \[x(\delta f) = \sum_{\delta \tau} DDM(\delta \tau, \delta f) - N_{thermal}, \quad y(\delta f) = \sum_{\delta \tau} \chi^2(\delta \tau, \delta f), \]

- 2-D Correlation between DDM and 2-D power ambiguity function
 \[x(\delta f) = DDM(\delta \tau, \delta f) - N_{thermal}, \quad y(\delta f) = \chi^2(\delta \tau, \delta f), \]
 \[\rho^* = \max \{ \rho(k, l) \} = \max \left\{ \frac{\sum_{i,j} (x_{i,j} - \bar{x}) \cdot \sum_{i,j} (y_{i,j} - \bar{y})}{\sqrt{\sum_{i,j} (x_{i,j} - \bar{x})^2} \cdot \sqrt{\sum_{i,j} (y_{i,j} - \bar{y})^2}} \right\} \]
Test Statistics for Identifying Coherent Returns

- Example: DDM from sea ice (RD 33, TD 421, index=874)

- **Measurements**
 - 1-D Corr. = 0.9862
 - SNR = 15.0769 dB

- **Ambiguity Function**
 - 2-D Corr. = 0.9844

- DDM (thermal noise removed)
 - 1-D Processing
 - Normalizing
 - 2-D Processing
Test Statistics for Identifying Coherent Returns

- Example: DDM from ocean (RD 33, TD 421, index=462)

![Image of DDM (thermal noise removed) with SNR = 1.0319 dB, 1-D Corr. = 0.4325, and 2-D Corr. = 0.2829]
Test Statistics for Identifying Coherent Returns

- DDM measurements with various 2-D correlation values

Corr. = 0.4

Corr. = 0.5

Corr. = 0.7

Corr. = 0.9

Corr. = 0.95

Corr. = 0.98
Test Statistics for Identifying Coherent Returns

- Comparisons of methods for identifying coherent returns
 - 145009 DDMs with antenna gain higher than 10 dB used for this comparison
 - 2-D correlation (mean: 0.4318, standard deviation: 0.2110)
 - 1-D correlation (mean: 0.5810, standard deviation: 0.1394)
 - SNR (mean: 6.3702 dB, standard deviation: 8.9494)

- Continuing to examine performance of these and other detectors of coherency
TDS-1 Correlation Map

- TDS-1 Worldwide Correlation Map (2-D correlation used)
 - TDS-1 Dataset: RD33 to RD71, Fixed gain mode
 - ~35000 Tracks with 5870792 DDMs (Antenna Gain > 5dBi)
 - Data collection period: 06/2015 ~ 04/2016 (11 Months)
 - 0.25 degree grid based worldwide map
 - Correlation range: 0.0710 ~ 0.9902
 - Number of samples averaged in a grid cell: 0~45 samples
TDS-1 Correlation Map

- Seasonal Correlation Map

June ~ August

November ~ March
TDS-1 Correlation Map

- Worldwide Coherent Returns
 - Criteria: 2-D correlation > 0.98 (initial conservative threshold)
 - 25186 coherent DDMs in total 4960996 DDMs (0.51%)
 - Mainly from sea ice and land surfaces
Examining Test Statistics for Sea Ice

- Monthly test statistics compared with sea ice coverage information
- OSI SAF Global Sea Ice Concentration (SIC): Fraction of a given ocean grid point covered by ice (%); model-based daily product (15th day of month used)
Setting Detection Thresholds

- Initial thresholds set to declare sea ice detection:
 - SNR > 5dB
 - Correlation > 0.7 (in general, open ocean < 0.5)

All methods show reasonable performance
- 1-D and 2-D correlations generally similar
- Evidence of reduced performance of SNR detector in some situations
Sea Ice Detector

- Seasonal variation of sea ice coverage in Antarctica
 - Thresholds 5dB for SNR and 0.7 for correlation cases are used
 - Detections show good matchup to SIC model versus time
 - 2-D method generally appears most robust
Example 1: Amazon river (with vegetation and wetlands, March 2016)

Detection with 2-D Corr. >0.98
Example 2: Nile river (Bare soil and no vegetation, March 2016)

Detection with 2-D Corr. > 0.98

1-arc SRTM DEM (m)

DDM
Initial CYGNSS Coherent Returns

- Examples of CYGNSS coherent returns
 - Data information: 05/25/17 (Day 135), CYG4, a00

![CYGNSS Comparison](image1)

RCG=11.75, SNR=18.73 dB, Gain=8.11 dB, Ang.=63.05, 2-D Corr.= 0.9809

![CYGNSS Comparison](image2)

RCG=188.51, SNR=21.24 dB, Gain=14.69 dB, Ang.=31.13, 2-D Corr.= 0.9836
Initial CYGNSS Coherent Returns

- 161 DDMs in total 342768 DDMs (0.047%) have greater than 0.98 2-D corr.
Conclusions

• TDS-1 coherent returns examined using multiple detection approaches
 • Sea ice detection
 • Inland waterbody examples

• Differing detection methods show similar performance
 • 2-D correlation showed somewhat better performance for sea ice cases
 • Examining additional results for inland cases for further assessment

• Future work
 • Examination of coherent returns in CYGNSS data
 • Demonstrations of enhanced resolution from coherent measurements
 • Use of coherent data to provide geophysical information